

NASA ECHO Project

ECHO Forms Specification

 Version 0.3

Global Science and Technology, Inc
7855 Walker Drive, Suite 200

Greenbelt, MD 20770 USA
Phone (301) 474-9696

Fax (301) 474-5970

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page ii Date Printed: 2/9/2007

REVISION HISTORY

Date Version Brief Description Author
08/18/2006 0.1 Initial Version Jason Gilman

08/29/06 0.2 Making updates from review and implementation. Jason Gilman

10/04/06 0.3 Updated the forms and the autopopulate extension to the final
namespaces for the v9 release. Michael Pilone

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page iii Date Printed: 2/9/2007

1. INTRODUCTION ... 6

1.1. Technologies Used ..6
1.1.1 XML...6
1.1.2 XPath..6
1.1.3 XML Schema ...6

1.2. Language and Client Type Neutral...6

1.3. ECHO Forms Document Overview ..7
1.3.1 Example ECHO Forms document..7

2. THE FORM.. 8

2.1. ECHO Form Namespace..9

2.2. Target Namespace ..9

2.3. ECHO Forms Types ...9
2.3.1 System Level ECHO Forms Lifecycle ...9

2.4. Imports ..10

3. MODEL.. 10

3.1. Instance..10
3.1.1 Namespaces in the Instance..10

3.2. Extension ...11
3.2.1 Example..11

4. USER INTERFACE ... 12

4.1. Controls ...12
4.1.1 Common Features and Components...13

4.2. Typed Controls ...16
4.2.1 Common Features and Components...16
4.2.2 Input ...16
4.2.3 Output...17
4.2.4 Select ..17
4.2.5 Range ...19
4.2.6 Secret..20
4.2.7 TextArea...21

4.3. Grouping Controls..22
4.3.1 Common Features and Components...22
4.3.2 Group ...22
4.3.3 Repeat...23

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page iv Date Printed: 2/9/2007

4.4. Reference Controls ...26
4.4.1 Common Features and Components...26
4.4.2 Controlref ...27
4.4.3 Selectref..27

4.5. System Level ECHO Forms and Advanced Clients ..28
4.5.1 Example of Advanced and Generic Client handling System Level ECHO Form..28

4.6. XPath Context...29
4.6.1 XML Example..29
4.6.2 Namespace Context..30
4.6.3 Context Node ...31

5. CLIENT FORM HANDLING .. 31

5.1. Activity Diagrams...31
5.1.1 Load and Display ECHO Form..32
5.1.2 User Interaction (Real Time Client) ...33
5.1.3 User Interaction (Request-Response Client) ..34
5.1.4 Common Stages..35

5.2. Design and Implementation Recommendations ..35
5.2.1 Generate Types from the ECHO Form Schema ...36
5.2.2 Create Business Objects to represent Controls...36
5.2.3 Use Visitor Pattern on Business Objects..36

6. AUTHORING ECHO FORMS GUIDELINES AND BEST PRACTICES 38

6.1. Model Guidelines ..38
6.1.1 Write an XML Schema for the instance document. ...38
6.1.2 Use version numbers in XML namespaces. ...38

6.2. Control Guidelines..38
6.2.1 Use ECHO system level form controls as much as possible. ...38
6.2.2 Limit the depth of groups and repeats. ...39
6.2.3 Use Ids in your controls ...39
6.2.4 Use XPath and regular expression constraints where appropriate. ..39
6.2.5 Use descriptive error messages in alerts...39
6.2.6 Utilize help attributes on controls. ...39
6.2.7 Test forms in a client. ...39

7. COMPLETE ECHO FORMS EXAMPLE ... 39

7.1. System Level ECHO Forms Example...40

7.2. Provider Level ECHO Forms Example..45

7.3. Sample GUI Screenshots..47
7.3.1 FTP Push and RangeLoc Selected ...47
7.3.2 8MM Tape Selected ...48
7.3.3 Temporal Subsetting Selected ..49
7.3.4 Parameter Subsetting Selected ...49
7.3.5 Polygon Subsetting Selected ..50

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page v Date Printed: 2/9/2007

7.4. Generated Instance...52

8. AUTOPOPULATE EXTENSION ... 53

8.1. Autopopulate Example...53

8.2. Autopopulate Elements ..53
8.2.1 Expressions ..53
8.2.2 Expression..53

8.3. Processing Model ..54
8.3.1 ECHO Processing Model ...54
8.3.2 Client Processing Model ..55

8.4. ECHO Form Rules and Guidelines...55

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 6 of 56 Date Printed: 2/9/2007

1. INTRODUCTION
This document covers ECHO Forms. ECHO Forms is based on the W3C standard XForms
1.0 (http://www.w3.org/TR/xforms/). Much of this specification is derived from the concepts and
wording of the XForms specification. ECHO Forms represents the next generation of Options.
By splitting the Options into two parts – model and user interface it separates the structure of
the information providers want to receive in orders from how that information is displayed in an
ECHO client.

1.1. Technologies Used
In order to develop a client to ECHO or write an ECHO Forms document the author must be
familiar with the following technologies.

1.1.1 XML

ECHO Forms documents are written in XML (http://www.w3.org/XML/). Clients must be able to
parse an ECHO Forms document and create and modify the XML instance data sent in an
ECHO Forms document. It is recommended that an advanced XML parser be used on the
client like DOM (http://www.w3.org/DOM/). DOM is a platform- and language-neutral interface
for allowing programs to access and update the structure of documents.

1.1.2 XPath

ECHO Forms relies heavily on XPath to bind the user interface to the instance data and to
express constraints on the instance data. XPath is a W3C specification
(http://www.w3.org/TR/xpath).

1.1.3 XML Schema

ECHO Forms includes some limited support for some of the built in types of XML Schema
(http://www.w3.org/TR/xmlschema-2/#built-in-datatypes). Unlike XForms, ECHO Forms does
not require clients to parse XML schema at runtime. There is a schema available for ECHO
Forms which describes the structure of an ECHO Forms document.

1.2. Language and Client Type Neutral
ECHO Forms is a language and client type neutral specification. This means that a client to
ECHO Forms can be written in any language that supports the technologies used. Any type of
client is supported. The main target of ECHO Forms is considered to be a client with a GUI
but a client could be written that worked in a console. Automated clients can be written to
handle ECHO Forms as well. The only requirement is that the XML produced by a client is
valid according for the ECHO Forms document.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 7 of 56 Date Printed: 2/9/2007

1.3. ECHO Forms Document Overview
This section shows a simple example of an ECHO Forms document and describes the
different parts of an ECHO Form.

1.3.1 Example ECHO Forms document
<?xml version="1.0" encoding="utf-8"?>
<form xmlns="http://echo.nasa.gov/v9/echoforms"
 targetNamespace="http://myorganization.gov/echoforms"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <model>
 <instance>
 <prov:options xmlns:prov="http://myorganization.gov/orderoptions">
 <prov:filename>data.txt</prov:filename>
 <prov:filesize>10</prov:filesize>
 </prov:options>
 </instance>
 </model>

 <ui>
 <input ref="prov:filename" type="xsd:string" label="File Name">
 <constraints>
 <constraint>
 <xpath>string-length(prov:filename) < 25</xpath>
 <alert>File names must be less than 25 characters</alert>
 </constraint>
 <constraint>
 <pattern>^[A-Za-z]+[A-Za-z0-9]*\.?[A-Za-z0-9]*$</pattern>
 <alert>
 File names must start with a letter and
 not contain illegal characters
 </alert>
 </constraint>
 </constraints>
 </input>

 <range ref="prov:filesize" type="xsd:int" start="0"
 step="10" end="1000" label="File Size (MB)">
 </range>
 </ui>

</form>

An ECHO client would display the ECHO Form in a fashion similar to the following:

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 8 of 56 Date Printed: 2/9/2007

In the example above form has two parts, a model and a ui (which stands for user interface).
The model contains an instance. The instance in an ECHO Form represents the structure of
the XML that is the result of a client processing an ECHO Form. It also contains default values
which the controls in the user interface are initialized with.
The user interface above contains a list of controls that are displayed to the user. The
example user interface contains two controls, an input field and a range. You will notice some
common things between the controls. They both have a ref, type, and a label. The ref is an
XPath string that refers into the instance to the XML Node that holds the data the control is
collecting. The type indicates what XML data type the control is collecting. The label contains
a short string to describe the control.
Clients can use the type to determine how to display the field. For example if the type was
xsd:dateTime a client may have shown a calendar widget versus using a text field for
xsd:string. Clients can also use the type to validate the user input. If the type is xsd:int a client
would know that user input of “red” would be invalid.

ECHO Forms can also validate input by using constraints. In the example above the input
control has two constraints. A constraint contains an alert and either an XPath or pattern
containing a regular expression. The alert is displayed to the user if the XPath evaluates to
false or the regular expression does not match the input. The first constraint contains an XPath
that checks that the filename entered is less than 25 characters. (Notice that the “<” is used
instead of the less than sign because the XPath must be XML escaped
(http://www.w3.org/TR/REC-xml/#dt-escape)) The second constraint example contains a
regular expression pattern that checks that the file name starts with a letter, only contains
letters and numbers, and may contain one period.
A client might display something like the following if the input failed the constraint.

Once a client has finished collecting information from the user it simply has to fill in the values
the user entered into the instance XML and send it to ECHO. If the user changed none of the
default values then the client would send the following to ECHO.

<prov:options xmlns:prov="http://myorganization.gov/orderoptions">

<prov:filename>data.txt</prov:filename>
 <prov:filesize>10</prov:filesize>

</prov:options>

2. THE FORM
<form xmlns="http://echo.nasa.gov/v9/echoforms"
 targetNamespace="http://myorganization.gov/echoforms"

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 9 of 56 Date Printed: 2/9/2007

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

…

</form>

The form element is the root element of any ECHO Forms document.

2.1. ECHO Form Namespace
The form element is where the ECHO Forms namespace should be declared. The ECHO
Forms namespace is http://echo.nasa.gov/v9/echoforms.

2.2. Target Namespace
The form element has one attribute called targetNamespace. This defines the target
namespace of the form which is the namespace that all the user interface controls are in. This
namespace is important when referring to controls imported from other ECHO Forms
documents. See Reference Controls for more information on importing controls.

2.3. ECHO Forms Types
ECHO Forms documents can be created by either a system administrator or a provider.
System level ECHO Forms define common models and user interfaces. The system level
ECHO Forms can be imported in a provider level ECHO Form. Providers can use the system
level ECHO Forms as building blocks to create their own forms. Providers can also import
their other ECHO Forms but not forms created by other providers. This prevents a provider
from breaking dependent provider’s forms if they modify one of their own forms.

2.3.1 System Level ECHO Forms Lifecycle

1. System Form Created with new version number.

2. Provider’s create dependent forms

3. New System Form added based on previous version

4. Providers transition to new version of form

5. Old version is deleted.

System level form changes are managed by versioning. When a system level form is created
it is given a version as part of its namespace. Providers may then write other ECHO Forms
that import that system form. The original system form is copied, modified, and added to
ECHO as a new form with a different version number if a change needs to be made to it. Once
providers have updated their forms to use the newest version the original one is deleted by
Ops. This lifecycle prevents clients or providers from breaking by changing the basic
definitions defined in the system ECHO Forms.
See <Clients advanced processing> for more information on client processing of ECHO
System Forms.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 10 of 56 Date Printed: 2/9/2007

2.4. Imports
<import name="StandardForm-v1.xml" scope="SYSTEM"/>
ECHO Forms Documents can import other ECHO Forms documents registered in ECHO.
Import statements have two parts, a name and scope. The name indicates the file name of the
ECHO Forms document. Scope is either SYSTEM or PROVIDER. The scope indicates
whether the imported document is a system ECHO Form created by an administrator or an
ECHO Form created previously by the provider.

3. MODEL
The model element contains the instance and allows for extensibility to ECHO Forms.

3.1. Instance
…

<model>

<instance>

<prov:options xmlns:prov="http://myorganization.gov/orderoptions">

<prov:filename>data.txt</prov:filename>

<prov:filesize>10</prov:filesize>

</prov:options>

</instance>

</model>

…

The instance represents both a model of the data that is the result of an ECHO Form as well
as initial values for the model. There should be only one element inside the instance. The
element in the instance should be valid such that if it were copied into its own document it
would represent a valid XML document. This means that the element should define all
namespaces and prefixes required for it and its sub elements. See the next section for
information on namespaces in the instance.

3.1.1 Namespaces in the Instance

The instance elements can be defined in any namespace other that the ECHO Forms
namespace. XPath statements throughout the ECHO Forms document will need to reference
elements in specific namespaces. All of the namespace prefixes used by XPath statements in
the ECHO Forms document should be defined in the root element of the instances as a
simplification to make client development easier. See the example below.

3.1.1.1 Namespace Example 1
...

<model>
<instance>

<prov:options xmlns:prov="http://myorganization.gov/orderoptions">

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 11 of 56 Date Printed: 2/9/2007

<prov:filename>data.txt</prov:filename>
<prov:filesize>10</prov:filesize>

</prov:options>
</instance>

</model>
<ui>

<input ref="prov:filename" type="xsd:string" label=File Name”/>
</ui>

…

The section of the ECHO Form above defines a simple instance and one input. The input ref
"prov:filename" is an XPath statement that refers to the filename element in the instance.
"prov" is a namespace prefix that's defined in the options element of the instance. It simpler
for clients to determine what all the namespace prefixes are for XPaths throughout the
document by defining all the namespace prefixes in the root element of the instance. Clients
can ignore any other namespaces declared in the document for the purposes of XPath
processing.

3.1.1.2 Namespace Example 2
...

<model>
<instance>

<prov:options xmlns:prov="http://myorganization.gov/orderoptions"
xmlns:other="http://myorganization.gov/orderoptions">

<prov:filename >data.txt</prov:filename>
<prov:filesize>10</prov:filesize>

</prov:options>
</instance>

</model>
<ui>

<input ref="other:filename" type="xsd:string" label=”File Name”/>
</ui>

…

Two namespaces prefixes, "prov" and "other", are defined in example 2. Notice that the URI of
the namespaces, "http://myorganization.gov/orderoptions", is the same for both prefixes. The
filename element is declared in the namespace identified by "prov" and the input refers to
filename in a namspace identified by "other". Because "other" and "prov" actually refer to the
same namespace this example is valid.

3.2. Extension
ECHO Forms is created such that it is extensible. Extensions are things that may be
processed by a client or different parts of ECHO but may not apply to every use of ECHO
Forms. An extension has a QName to identify it and can contain any XML not in the ECHO
Forms namespace.

3.2.1 Example

This shows an example using the Autopopulate extension. See page 53, section 8
Autopopulate Extension for more information.
<model>

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 12 of 56 Date Printed: 2/9/2007

 <instance>

 <prov:options xmlns:prov="http://myorganization.gov/orderoptions">

 <prov:filename>data.txt</prov:filename>

 <prov:filesize>10</prov:filesize>

 <prov:itemid/>

 </prov:options>

 </instance>

 <extension name="auto:autopopulate"

xmlns:auto="http://echo.nasa.gov/v9/echoforms/autopopulate">

 <auto:expressions>

 <auto:expression ref="prov:options/prov:granulesize"

metadata="/results/provider/result/GranuleURMetaData/DataGranule/SizeMBD
ataGranule/text()" />

 </auto:expressions>

 </extension>

</model>

…

4. USER INTERFACE
The user interface of ECHO Forms is described in the form using controls. Control types vary
to support the collection of various types of information.

4.1. Controls
The controls are described in XML and rendered by a client application. Although this
document suggests how the controls should be rendered, different clients may need to render
the controls in different ways. For example, in an HTML based application, multiple HTML
controls may need to be used to render a single ECHO Forms control such as a date input. For
more interactive clients, such as a thick client .NET application, a complex date picker may be
used.
The controls are associated to the instance document using XPath. The controls will be
populated with the values in the default instance, and will update the instance as the data is
modified in the control. Many of the controls support strictly typed data and may be rendered
differently by the client based on the data type.
The controls in the user interface section are listed linearly with no layout information. A client
must keep the order of the controls when rendering the form in order to maintain the semantic
meaning behind the position of the controls. A client may decide to split the controls into
multiple columns in a table, or in multiple dialogs. This behavior is acceptable, as long as
related elements are visually associated.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 13 of 56 Date Printed: 2/9/2007

4.1.1 Common Features and Components

The user interface (UI) controls share a number of common components such as attributes
and child elements. If a control does not support a common component or the control applies a
special meaning or restriction to the common component it will be detailed in the description of
the control.
Computed expressions vs. fixed properties

• Fixed properties are static values that the XForms Processor evaluates only once. Such
properties consist of literals, and are not subject to XPath evaluation.

• Computed expressions are XPath expressions that provide a value to the ECHO Forms
processor. Such values are recalculated at certain times as specified by the ECHO
Forms Processing Model (See 5 Client Form Handling). These expressions encode
dynamic properties, often constraints, such as the dependency among various data
items. Computed expressions are not restricted to examining the value of the instance
data node to which they apply. XPath expressions provide the means to traverse the
instance data. Unless otherwise stated, all XPaths used in the common components will
be evaluated in the standard ECHO Forms control XPath context (see 4.5 XPath
Context).

4.1.1.1 Ref Attribute

• Computed Expression: Yes

• Legal Values: any XPath expression that returns an element or attribute node

• Default Value: None

• Inheritance rules: See 4.5 XPath Context
The ref attribute is used to bind a control to a node in the instance document. If a control has a
ref attribute, the XPath must be valid for the instance document in the form model. Therefore,
all controls that have a ref in the form must have a node in the default model instance. The ref
attribute is the key in linking the UI with the model in an ECHO Forms form.

4.1.1.2 Id Attribute

• Computed Expression: No

• Legal Values: anything of type xs:NCNAME

• Default Value: None

• Inheritance rules: Not inherited
The id attribute allows a control to have a specific name that it can be referenced by. This is
useful for error messages or creating control references. (See 4.4 Reference Controls). The
whole identifier for a control consists of its id and the targetNamespace of the form it’s in.

4.1.1.3 Relevant

• Computed Expression: Yes

• Legal Values: any XPath expression that returns a boolean value

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 14 of 56 Date Printed: 2/9/2007

• Default Value: true()

• Inheritance rules: If the parent is not relevant then the children are not relevant as well.
The relevant attribute is used to indicate the relevance of a given control. If the control is
relevant, the control should be displayed by the client and all other attributes should be
evaluated (such as required and read only). If a control is not relevant, it should be hidden by
the client. When an instance document is submitted, any non-relevant nodes (the relevant
XPath evaluates to false) must be removed from the instance.

4.1.1.4 Required

• Computed Expression: Yes

• Legal Values: any XPath expression that returns a boolean value

• Default Value: false()

• Inheritance rules: Not inherited.
The required attribute indicates that the instance document must contain a value for the control
before the form may be submitted. A value of false indicates that the instance may or may not
contain a value for the control. Required is only evaluated if the control is relevant.

4.1.1.5 ReadOnly

• Computed Expression: Yes

• Legal Values: any XPath expression that returns a boolean value

• Default Value: false()

• Inheritance rules: If a parent is read only then the children are read only as well.
The readonly attribute indicates if the instance data is read only or mutable. If the attribute
evaluates to true, the client must prevent the user from modifying the instance data. Note that
because readonly is a computed expression, it may evaluate to true at one time and false
another time. Therefore depending on the XPath used, one cannot guarantee that the instance
data may not have change at some point in its lifespan. Obviously this would not be the case
with a consistent XPath such as ‘true()’.
Unlike relevant, readonly controls should be displayed to the user, however the user must not
be able to edit the data.

Hint: To prevent a user from ever modifying part of the instance do not create a control that
references that node. Use the Output control if the data needs to be displayed to the user but
never modified. ReadOnly is best used if a control’s read only status should change based on
other values within the instance.

4.1.1.6 Label

• Computed Expression: No

• Legal Values: any xsd:string value. It is recommended that only a few words be used. New
line characters are not permitted.

• Default Value: None

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 15 of 56 Date Printed: 2/9/2007

• Inheritance rules: Not inherited
A label attribute contains a string that will be used as the label of the control. Although the
client can choose the best way to associate the label with the control, the label should be a
limited number of words and is normally placed on the left or top of the data portion of the
control.

4.1.1.7 Help

• Computed Expression: No

• Legal Values: any xsd:string. It is recommended that a single, short sentence be used.

• Default Value: None

• Inheritance rules: Not inherited.
A help child element is a simple text element that contains a string that will be used as the help
of the control. Although the client can choose the best way to associate the help with the
control, the help should be a single, short sentence and is normally rendered as a tool tip or
status bar message for the data portion of the control.

4.1.1.8 Constraint

A constraint child element specifies a predicate that needs to be satisfied for the associated
instance data node to be considered valid. A control can have any number of constraints which
are evaluated in the order that they appear. Because all the constraints must be satisfied,
multiple constraints are ‘and-ed’ together. A constraint contains either a regular expression
pattern or an XPath expression and an alert message.
4.1.1.8.1 XPath Constraint

• Computed Expression: Yes

• Legal Values: any XPath expression that returns a boolean value

• Default Value: None
A xpath child element is a an XPath expression that must evaluate to true to satisfy the
constraint. The XPath may contain new line and tab characters to support readability. New line
and tab characters should be replaces with a space character before evaluating the XPath.
4.1.1.8.2 Pattern Constraint

• Computed Expression: No

• Legal Values: any regular expression compatible with Perl 5

• Default Value: None
A pattern child element is a regular expression that must match the node data to satisfy the
constraint. The pattern will be applied to the un-encoded string value of the data node.
Therefore XML elements in the value will be un-escaped, however if a pattern is applied to a
xsd:dateTime for example, the string will represent the schema encoded dateTime. For more
information on regular expressions, please consult http://www.regular-
expressions.info/tutorial.html.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 16 of 56 Date Printed: 2/9/2007

4.1.1.9 Alert

• Computed Expression: No

• Legal Values: any xsd:string. It is recommended that a single, short sentence be used.

• Default Value: None
A alert child element is a message that will be displayed to the user if the constraint is not
satisfied. This message should contain a description of how the user can satisfy the constraint.
For example, a password constraint alert may say, “Your password must be at least 8
characters and contain numbers and letter.” It is recommended that the client display this
message in a noticeable means such as using bright colors or a notification dialog.

4.2. Typed Controls
Typed controls are strongly typed using XML Schema types. These types indicate the format
as well as the valid values that may occur in the instance document.

4.2.1 Common Features and Components

4.2.1.1 Type

• Computed Expression: No

• Legal Values: a QName of any supported XML Schema type

• Default Value: None
The type attribute indicates the type of the data in the instance document. Clients can also use
the type information to customize the control by rendering it differently for each supported type.
The type attribute is required on all typed controls unless otherwise noted by the control.

4.2.2 Input

• Types Supported: string, double, dateTime, long, int, short, boolean
The input control allows free-form input from the user. The client should attempt to provide an
accurate rendering of the control for the given data type. For example, for a boolean type a
checkbox should be used. For a dateTime type, a date picker should be used.

4.2.2.1 Common Component Variations

None

4.2.2.2 Specific Components

None

4.2.2.3 XML Example

<input type=”xsd:string” relevant=”true()”

required=”true()” ref=”po:name” readonly=”false()”

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 17 of 56 Date Printed: 2/9/2007

 label=”First and Last Name”/>

4.2.2.4 Client Rendering Example

4.2.3 Output

• Types Supported: string, double, dateTime, long, int, short, boolean
This form control renders a value from the instance data, but provides no means for entering or
changing data. It is used to display values from the instance. The output control can be used to
display the value at a particular location in the instance by using a binding expression; it can
also be used to display the result of evaluating an XPath expression by specifying the XPath
expression to be evaluated via attribute value instead of ref. Note that attributes ref and value
on element output are mutually exclusive.

4.2.3.1 Common Component Variations

The ref attribute is mutually exclusive with the value attribute.
The readonly attribute is ignored.
The required attribute is ignored.

4.2.3.2 Specific Components
Value

• Computed Expression: Yes

• Legal Values: any XPath expression that returns a string value

• Default Value: None
The value attribute contains an XPath expression that will be evaluated. The resulting string of
the evaluation will be displayed. This attribute is mutually exclusive with the ref attribute. If the
value attribute is used, the type attribute must be type string.

4.2.3.3 XML Example
<output type="xsd:string" relevant="true()"

value="concat(string('Your order contains '), 5, string(' items.'))"

label="Order Summary"/>

4.2.3.4 Client Rendering Example

4.2.4 Select

• Types Supported: string, double, dateTime, long, int, short

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 18 of 56 Date Printed: 2/9/2007

This form control allows the user to make one or multiple selections from a set of choices. A
select control uses an attribute to indicate if it is a single or multiple select. A select may also
be open, which means that a user may type in a value and select it. In the case of an open
select, the items in the instance which indicate selection may not be limited to the items in the
original list of choices.

4.2.4.1 Common Component Variations

The ref attribute will refer to the root element which will hold the selected value elements. The
name of the selected value elements is indicate with a specific attribute.
The required attribute indicates that at least one item must be selected. If the required attribute
is false, an instance document with no selected items is valid. A constraint may be used to
enforce a minimum number of selected items (for example, enforcing the selection of at least
three items in a selection).

4.2.4.2 Specific Components

4.2.4.2.1 Open

• Computed Expression: No

• Legal Values: ‘true’ or ‘false’

• Default Value: false
The value attribute contains a Boolean value which indicates if the selection is open to user
input. If the selection is open, the client must allow the user to enter values into the selection
and select those new values. The editor for the value input should be type specific (for
example, a date picker for the dateTime type). If the selection is not open, the client must
ensure that only items in the list of choices are selected.
4.2.4.2.2 ValueElementName

• Computed Expression: No

• Legal Values: any valid XML Schema NCName

• Default Value: None
The valueelementname attribute contains an NCName which is the name of the child element
of the ref element that will contain the selected values. This element may occur in the instance
document to provide default selections. The client application will add and remove instances of
this element as the selection changes. The element will contain the value text of the selected
item or items.
4.2.4.2.3 Multiple

• Computed Expression: No

• Legal Values: ‘true’ or ‘false’

• Default Value: false
The multiple attribute contains a Boolean value which indicates if the selection allows multiple
items to be selected. If multiple selections are supported, the client must allow the user to
select more than one item in the list of choices.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 19 of 56 Date Printed: 2/9/2007

4.2.4.2.4 Item

• Computed Expression: No
The item child element defines the valid items that may occur in the selection. Each item
element contains a value and label child elements. The label will be displayed to the user by
the client application for each item. The value is the value that will occur in the model instance
if the item is selected.

4.2.4.3 XML Example

 <select ref="po:medias" type="xsd:string" multiple="false"

 open="false" valueElementName="media" label="Media Type">

 <item label="8MM Tape 5GB" value="TAPE8MM_5GB"/>

 <item label="8MM Tape 2.5GB" value="TAPE8MM_2AND1HALFGB"/>

 <item label="FTP Push" value="FTPPUSH"/>

 </select>

4.2.4.4 Client Rendering Example

4.2.5 Range

• Types Supported: double, dateTime, long, int, short
This form control allows selection from a sequential range of values. A range control has a
minimum value, maximum value, and a step size. The selected value must be between the
minimum and maximum and occur on a valid step increment. A client will normally render a
range control as a slider, spinner, or up-down box. The client must use the type information in
the range control to render the proper controls to the user. The user should be told of the
minimum, maximum, and step size.

4.2.5.1 Common Component Variations

None

4.2.5.2 Specific Components

4.2.5.2.1 Start

• Computed Expression: No

• Legal Values: any valid value in the type of the range

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 20 of 56 Date Printed: 2/9/2007

• Default Value: None
The start attribute contains the minimum value of the range. This value is inclusive and must
be the same type as the range control.
4.2.5.2.2 End

• Computed Expression: No

• Legal Values: any valid value in the type of the range

• Default Value: None
The end attribute contains the maximum value of the range. This value is inclusive and must
be the same type as the range control.
4.2.5.2.3 Step

• Computed Expression: No

• Legal Values: any valid positive value in the type of the range except in the case of a
dateTime, in which case the valid value is any positive integer

• Default Value: None
The step attribute contains the amount that the range will move as the value is adjusted. The
user is required to pick a value which occurs on a step based on the start value of the range.
The client should attempt to force the user onto the step values to limit user error. The step
value must be smaller than (end – start). In the case of a dateTime range type, the step value
indicates the number of seconds.

4.2.5.3 XML Example
<range ref="po:lowersearchdate" start="2000-06-15T01:15:23Z"
 end="2010-06-15T01:15:23Z" step="5"
 type="xsd:dateTime" label="Lower Search Date"/>

<range ref="po:acceptableerror" start="42"
 end="110" step="2.12344444"
 type="xsd:double" label="Acceptable error"/>

4.2.5.4 Client Rendering Example

4.2.6 Secret

• Types Supported: string, double, long, int, short

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 21 of 56 Date Printed: 2/9/2007

The secret control allows free-form input from the user. This control is identical to the input
control with the following exceptions: it does not support the boolean or date types, user input
must be obscured using an echo character such as a ‘*’. The secret control is normally used
like an input control but for sensitive data such as user names or passwords.

4.2.6.1 Common Component Variations

None

4.2.6.2 Specific Components

None

4.2.6.3 XML Example
<secret ref="po:password" type="xsd:string" label="Access Password"/>

4.2.6.4 Client Rendering Example

4.2.7 TextArea

• Types Supported: string
The textarea control allows free-form input from the user. This control is similar to the input
control, except that it allows for multi-line input. The textarea control only supports the string
type.

4.2.7.1 Common Component Variations

None

4.2.7.2 Specific Components

None

4.2.7.3 XML Example
<textarea ref="po:specialInstructions" type="xsd:string" required="true()"
 label="Special Instructions"/>

4.2.7.4 Client Rendering Example

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 22 of 56 Date Printed: 2/9/2007

4.3. Grouping Controls
Grouping controls are used to combine together controls to form logical and visually grouped
elements. Grouping controls can be nested.

4.3.1 Common Features and Components

This section lists some common features and components for grouping controls

4.3.1.1 Relevance

Relevant, as defined in section 4.1.1.3, indicates whether a control is relevant to be displayed
in the GUI or sent in the XML. All the children of a grouping control are not relevant if the
parent control is not relevant. The children of a grouping control MAY be relevant according to
their individual relevant attributes if the parent control is relevant.

4.3.1.2 Ref Attribute

The Ref Attribute, as defined in section 4.1.1.1, defined the node in the instance document that
the control was bound to. Grouping controls can be bound to the instance document as well.
The Ref attributes of child controls are relative to the Ref of the grouping control. See section
4.6 XPath Context.

4.3.1.3 Required

Required does not get inherited in grouping controls. Whether or not a grouping control is
required has no bearing on the required state of the children. This essentially means that the
required field on a grouping control is ignored since there is no user collected data for a
grouping control besides its children.

4.3.1.4 Read Only

The ReadOnly attribute is inherited by children of a grouping control. If the grouping control is
read only then all of the children are read only as well. The children of a grouping control MAY
be read only according to their individual attributes if the parent control is not read only.

4.3.2 Group

A group combines together other controls to show they belong together. A group is often
displayed as a bounding box with a label. This shows the user that the elements of the group
are part of a single unit.

4.3.2.1 Common Component Variations

The ref attribute is optional for a group. It can not reference an attribute. If it is used then the
rules defined in 4.6 XPath Context applies.

4.3.2.2 Specific Components

None

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 23 of 56 Date Printed: 2/9/2007

4.3.2.3 XML Example

<group ref="po:ftppush" id="ftpPushGroup" label="FTP Push Options">

 <input ref="po:user" type="xsd:string" label="FTP User"/>

 <secret ref="po:password" type="xsd:string" label="FTP Password"/>

 <input ref="po:host" type="xsd:string" label="FTP Host"/>

 <input ref="po:port" type="xsd:int" label="FTP Port"/>

 <input ref="po:directory" type="xsd:string" label="FTP Directory"/>

</group>

4.3.2.4 Client Rendering Example

4.3.3 Repeat

A repeat allows the definition of repeating structures such as points within a polygon. As
grouping controls repeats can be nested to define multiple levels of repetition such as many
polygons being entered each with many points.
Repeat may be the most complex control for clients to handle. Clients must be able to allow
the user to add or remove the repeated items.

4.3.3.1 Common Component Variations

The ref attribute is can not reference an attribute for a repeat. Ref in a repeat should reference
the element to which the elements in the template should be added.

4.3.3.2 Specific Components

4.3.3.2.1 template

• Computed Expression: No

• Legal Values: Any XML in namespace other than ECHO Forms namespace

• Default Value: None

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 24 of 56 Date Printed: 2/9/2007

Template is an element in repeat that is similar to instance in the model in that it can contain
any XML and defines a model for the controls in the repeat. The template is used as a
template for creating new elements to add as children to the node that ref points to. Template
can contain only one root element. All of the children of a repeat reference a node in the
repeats template.
4.3.3.2.2 minItems

• Computed Expression: No

• Legal Values: Any valid XML Schema int

• Default Value: 0
The minItems attribute contains the minimum number of items that may appear in the repeat.
The items refer to the instances of the template. The minItems attribute can be used to force a
lower limit number of instances in the repeat before it is considered valid. It is recommended
that if the repeat contains the minimum number of items, a client should not allow the user to
remove any more items. Setting the minItems and maxItems to the same value creates a
closed repeat where items cannot be added or removed, but simply edited. The model
instance in the form must have enough items in the repeat to satisfy this constraint.
4.3.3.2.3 maxItems

• Computed Expression: No

• Legal Values: Any valid XML Schema int

• Default Value: Max integer
The maxItems attribute contains the maximum number of items that may appear in the repeat.
The items refer to the instances of the template. The maxItems attribute can be used to force
an upper limit number of instances in the repeat before it is considered invalid. It is
recommended that if the repeat contains the maximum number of items, a client should not
allow the user to add any more items. Setting the minItems and maxItems to the same value
creates a closed repeat where items cannot be added or removed, but simply edited. The
model instance in the form must have fewer items in the repeat to satisfy this constraint.

4.3.3.3 XML Example

This example shows two repeats nested. This repeat allows many polygons each with many
points to be created. The constraint in the inner repeat requires a certain number of repeated
points.
…
<model>
 <instance>
 <spatial:options xmlns:spatial=”http://nasa.gov/spatial”>
 <spatial:polygons>
 <spatial:polygon>
 <spatial:points>
 <spatial:point>
 <spatial:x>0</spatial:x>
 <spatial:y>0</spatial:y>
 </spatial:point>
 <spatial:point>

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 25 of 56 Date Printed: 2/9/2007

 <spatial:x>0</spatial:x>
 <spatial:y>0</spatial:y>
 </spatial:point>
 <spatial:point>
 <spatial:x>0</spatial:x>
 <spatial:y>0</spatial:y>
 </spatial:point>
 </spatial:points>
 </spatial:polygon>
 </spatial:polygons>
 </spatial:options>
 </instance>
</model>
…
<repeat ref="spatial:polygons" minItems="0" maxItems="200" label="Polygons">
 <template>
 <polygon xmlns="http://nasa.gov/spatial">
 <points>
 <point>
 <x>0</x>
 <y>0</y>
 </point>
 <point>
 <x>0</x>
 <y>0</y>
 </point>
 <point>
 <x>0</x>
 <y>0</y>
 </point>
 </points>
 </polygon>
 </template>

 <repeat ref="spatial:points" minItems="3" maxItems="5" label="Point">
 <template>
 <point xmlns="http://nasa.gov/spatial">
 <x>0</x>
 <y>0</y>
 </point>
 </template>

 <input ref="spatial:x" type="xsd:int" label="X"/>
 <input ref="spatial:y" type="xsd:int" label="Y"/>
 </repeat>
</repeat>

4.3.3.4 Client Rendering Example

This client example shows editing each item of a repeat in a separate window.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 26 of 56 Date Printed: 2/9/2007

4.4. Reference Controls
Reference controls are used to refer to existing, common control definitions in the same or
other ECHO Forms documents. Using reference controls, it is possible to define a control
once, and then reuse that control in multiple locations. Controls are referenced through their id
attribute which is a qualified name. Reference controls may not refer to other reference
controls.

4.4.1 Common Features and Components

4.4.1.1 Idref

• Computed Expression: No

• Legal Values: any QName which refers to a defined control id

• Default Value: None
The idref attribute is a QName which indicates the control to reference. The control referenced
must be defined with the given id.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 27 of 56 Date Printed: 2/9/2007

4.4.2 Controlref

The controlref reference control indicates that the control referenced should replace this
reference control in the form. Any attributes defined in the controlref element will replace those
defined in the referenced control. All constraints defined in a controlref element will be
appended to those of the referenced control. A controlref element may reference any control
with an id attribute. If the control referenced is in a separate form, the other form must be
imported using the standard ECHO Forms import element.

4.4.2.1 Common Component Variations

Common component attributes used in a controlref will replace those of the control referenced.
In this way, it is possible to replace the relevant, required, label, and ref components of the
referenced control. If a controlref does not define one of the common control attributes, the
value defined on the referenced control should be used.

4.4.2.2 Specific Components

None

4.4.2.3 XML Example

<controlref ref="po:ftppush" idref="echo:ftpPushGroup"

required="true()">
<constraints>

 <constraint>
 <xpath>string-length(password) > 4</xpath>
 <alert>Your password must be longer than 4 characters</alert>
 </constraint>
 </constraints>

</controlref>

4.4.3 Selectref

The selectref reference control indicates that the control referenced should replace this
reference control in the form. The selectref element behaves identically to controlref except
that it can only refer to select controls. A selectref element can limit the number of items
available for selection in the referenced select control. Therefore, using a selectref, it is
possible to share common selections even if all the users of the select control do not support
all the items in the original select.
If a selectref is required to contain all the items in the referenced select control, it is
recommended that a controlref be used instead of repeating all the items in the referenced
select.

4.4.3.1 Common Component Variations

Selectref has the same variations as controlref (see Error! Reference source not found.).
4.4.3.2 Specific Components

4.4.3.2.1 Item

• Computed Expression: No

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 28 of 56 Date Printed: 2/9/2007

The item child element defines the valid items that may occur in the selection. Each item
element contains a value and label child elements. The label will be displayed to the user by
the client application for each item. The value is the value that will occur in the model instance
if the item is selected. All of the values specified must occur in the selection referenced.
Therefore it is possible to only restrict a selection, but not to add new values to a referenced
selection. If an item does not have a label, the label defined in the referenced select control
item should be used.

4.4.3.3 XML Example
<selectref ref="po:medias" idref="system:mediaTypeSelect">
 <item label="8MM Tape 5GB" value="TAPE8MM_5GB"/>
 <item label="FTP Push" value="FTPPUSH"/>
</selectref>

4.5. System Level ECHO Forms and Advanced Clients
ECHO Forms defines a way to write user interface that clients can handle generically at
runtime. It saves clients from having to code specific GUIs to each provider’s schema. This is
a powerful feature that allows for changes in provider definitions to be handled dynamically by
clients. While powerful this can sometimes lead to "generic looking" clients. System Level
ECHO Forms allow clients to provide a better user experience.
As defined in section 2.3.1 System Level ECHO Forms Lifecycle, a system level ECHO Form
will contain basic types that providers can reuse in their own forms. Once a system level
ECHO Form has been created it will never be changed. Only new versions of it will be added.
Advanced clients can be coded to use a different user interface that what is detailed in the
system level form as long as the resulting XML produced is the same.

4.5.1 Example of Advanced and Generic Client handling System Level ECHO Form

4.5.1.1 System Level Form

A system level form defines a group of inputs for a bounding box. The bounding box has an
upper left point and a lower right point. This would be 4 input controls in a single group control,
2 input controls being for each point.
…
<group ref="spatial:boundingbox" id="boundingBox" label="Bounding Box">
 <input ref="spatial:ullat" type="xsd:double" label="Upper Left Latitude"/>
 <input ref="spatial:ullon" type="xsd:double" label="Upper Left Longitude"/>
 <input ref="spatial:lrlat" type="xsd:double" label="Lower Right Latitude"/>
 <input ref="spatial:lrlon" type="xsd:double" label="Lower Right Longitude"/>
</group>

…

4.5.1.2 Provider’s Form

A provider defines a form that imports the system level form. They also define a control
reference to the bounding box.
…
<controlref ref="prov:myboundingbox" idref="echo:boundingBox"

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 29 of 56 Date Printed: 2/9/2007

 label="Bounding box for spatial subsetting"/>

…

4.5.1.3 How a Generic Client handles provider form

A generic client would handle the provider form by first locating the system level control
referenced in the provider form. It would then display the group with the 4 input boxes and
labels. A user would see the 4 input boxes and go get their map.

4.5.1.4 How an Advanced Client handles the provider form

An advanced client would load the provider form. It would then check the control references to
see if it had any specialized controls for the controlref’s in the provider form. The advanced
client finds that it has a specialized widget that’s associated with the id referenced by the
control ref. Instead of displaying the group with 4 input boxes the advanced client will display
its specialized bounding box map widget.

4.5.1.5 Differences in user experience

The differences in user experience is obvious once you realize that the user using the generic
client has to get out a map to find the correct points and the generic client will lack the
validation that can be done with the advanced client. Because the advanced client knows that
its looking at a bounding box instead of a group and 4 input boxes it can check things like
making sure the area is correct for the granule being subset.
The advanced client provides fewer errors from passing through to the provider and less work
for the user.

4.6. XPath Context
The XPath context defines the context in which all XPaths in the form are executed. The
context definition is essential to make the forms behave correctly and to ensure that the author
of the form has the same understanding of the context as the client application rendering the
form.
The XPath context is composed of two parts:
1. The list of available namespaces and the corresponding aliases defined for the namespaces

2. The node in the XML tree that is currently being processed

The client application is responsible for establishing the correct XPath context before executing
any XPath expression.

4.6.1 XML Example

The following example will be used to explain the XPath context:
<?xml version="1.0" encoding="utf-8"?>
<form xmlns="http://echo.nasa.gov/v9/echoforms"
 targetNamespace=" http://myForm/v1"
 xmlns:myForm=" http://myForm/v1"
 xmlns:echo="http://echo.nasa.gov/echoforms/controls/v1"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 30 of 56 Date Printed: 2/9/2007

 <model>
 <instance>
 <test xmlns="http://myForm/v1" xmlns:myForm="http://myForm/v1"
 xmlns:echo="http://echo.nasa.gov/echoforms/controls/v1">
 <name>Bob Smith</name>
 <latBox>
 <upperleftlat/>
 <lowerrightlat/>
 </latBox>
 <lonBox>
 <upperleftlon/>
 <lowerrightlon/>
 </lonBox>
 <media>TAPE8MM_5GB</media>
 </test>
 </instance>
 </model>

 <ui>
 <input ref="myForm:name" type="xsd:string" label="Name"/>

 <group ref="myForm:latBox" label="Lat Box">
 <input ref="myForm:upperleftlat" type="xsd:double"
 label="Upper Left Latitude"/>
 </group>

 <group label="Lon Box">
 <input ref="myForm:lonBox/myForm:upperleftlon" type="xsd:double"
 label="Upper Left Longitude"/>
 </group>
 </ui>

</form>

4.6.2 XPath Formatting

To increase the readability and to simplify the authoring of forms, XPaths used in ECHO Forms
(such as in constraints) may span multiple lines and contain TAB characters. Some XPath
processors may have trouble evaluating XPaths which contain new line or TAB characters,
therefore the client is responsible for replacing these characters with a single space character
before evaluation. Note that if an XPath is used in an attribute, it cannot span multiple lines per
the XML specification.

4.6.3 Namespace Context

The namespace context for all XPaths used in an ECHO form is the same. The context is
composed of all namespaces and prefixes defined on the root element of the model instance
document. For example, in the above ECHO Forms form, the namespace context would
contain all the namespaces and prefixes defined on the <test> element. So the namespace
map would be:

• [default ns] -> http://myForm/v1

• myForm -> http://myForm/v1

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 31 of 56 Date Printed: 2/9/2007

• echo -> http://echo.nasa.gov/echoforms/controls/v1
These prefixes will be available in any XPaths used in the form definition. Note that the
namespaces may also need to be defined on the root form element if the prefix is used in the
XML document outside of the instance (for example, in a control reference idref attribute).

4.6.4 Context Node

The context node defines the current node in the XML tree that is being processed. A context
node is used as the root of all relative XPath expressions. It is recommended that all XPath
expressions in controls be relative to the context node. This is extremely important when
defining controls that may be referenced from other forms. If an absolute XPath is used, the
referenced control would dictate the structure of the form referencing the control which is not
desirable.
By default, the context node is always the root node of the instance document. Therefore, all
root level controls (controls which are children of the ui element) have a context node of the
root node of the document. A control is relative to the context node of its closest ancestor that
defines a ref node. For example, if a control is in a container control, such as a group or
repeat, and the group or repeat contains a ref attribute, the child control is relative to the group
or repeat node.
In the example form above, the name input control is using a relative XPath to refer to the
name element. The absolute XPath for this control is
/{http://myForm/v1}test/{http://myForm/v1}name.
The input in the latitude group is using a relative XPath as well, however because the
containing group control defines a ref node, the input is relative to this node. Therefore the
absolute XPath for this control is
/{http://myForm/v1}test/{http://myForm/v1}latBox/{http://myForm/v1}upperleftlat.
The input in the longitude group is using a relative XPath as well, however because the
containing group control does not define a ref node, the input is relative to the root of the
instance. Therefore the absolute XPath for this control is
/{http://myForm/v1}test/{http://myForm/v1}lonBox/{http://myForm/v1}upperleftlon.
Although XPaths are always evaluated relative to this context node, it is possible to do
absolute XPaths using the standard XPath syntax or using one of the many XPath axis
components. Absolute XPaths may be useful when defining constraints, required, or relevant
attributes. A client must support executing any valid XPath in the ECHO Forms form and
should not assume that all XPaths are relative or absolute.

5. CLIENT FORM HANDLING
The section explains best practices for handling and processing an ECHO Forms document.

5.1. Activity Diagrams
This section includes 3 activity diagrams for handling an ECHO Form document.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 32 of 56 Date Printed: 2/9/2007

5.1.1 Load and Display ECHO Form

This activity diagram shows how a client would load an ECHO form document and display it to the user.

Display Form

Load form

Retrieve
external forms

Imports in form?

yes

no

Can form be retrieved?

Throw
Exception yes

no

Create a map of
all QNames to

controls

Replace controlrefs
with referenced

controls

Create gui widgets
for each control

Display GUI
widgets

Load instance
data

Check and update
relevant, required,
read only states

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 33 of 56 Date Printed: 2/9/2007

5.1.1.1 Stages Explanation

• Load Form
o The client will receive an ECHO Form as part of another object from ECHO. It

should attempt to load the form here.

• Retrieve External Forms
o If the form includes imports the other ECHO Forms can be retrieved from ECHO

• Create a map of QNames to Controls
o QName means Qualified Name and is an XML term. A qualified name usually

includes a prefix, namespace, and a localname. In this case QName refers to
the qualified names of controls. The control’s id is its local name. The
namespace is the target namespace of the ECHO Form that the control is in.

o In order to find the controls by Id a map needs to be made of the QNames to the
controls so they can be looked up in later steps.

• Replace controlrefs with Referenced Controls
o In this step the map created in the prior step is used to find the referenced

controls.
o The controlrefs should be replaced with a copy of the controls they reference.
o Controlrefs can override some fields of the referenced controls so the copies

should be updated with overridden values.

• Create GUI Widgets for each Control
o For each control in the form a GUI widget of the correct type should be created.
o A GUI Widget is some component in the client language that can display a field

for the user to enter information.
o If a client has created advanced widgets for specific system form definitions they

should be created here if the control has the correct id. (See 4.5 System Level
ECHO Forms and Advanced Clients)

• Load Instance Data
o The GUI Widgets should be updated with the values from the instance.

• Display GUI Widgets
o The GUI Widgets should be displayed

 Ie (open window with GUI Widgets, create html from widgets, etc)

5.1.2 User Interaction (Real Time Client)

This activity diagram shows how a real time client can respond to interaction from the user
updating a field and submitting the form.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 34 of 56 Date Printed: 2/9/2007

5.1.2.1 Widget Updated and Submit Diagram

User Interaction (Real time client)

Widget is updated no

yes

Submit

no

Validate All
Input

Is Valid

Display ErrorsUpdate Instance

Send
Selection

Errors received

Display
Success

yes

Check and update
relevant, required,
read only states

Prune Instance Validate All Input

5.1.3 User Interaction (Request-Response Client)

This activity diagram shows how a client that can not validate the controls as the user enters the information.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 35 of 56 Date Printed: 2/9/2007

5.1.4 Common Stages

These are stages that are common among the activity diagrams

• Check and Update Relevant, Required, and Read Only States
o Is a control is not relevant the GUI widgets should not be displayed
o The widget may need to know if it is a required field or not
o Read only widgets should be displayed but not be editable by the user.

• Update Instance
o The instance should be updated with the values the user entered

• Validate All Input
o This is optional as ECHO will always update the selections received from clients

 A better client experience can be obtained by validating on the client
o All the controls should be validated to check that the user input was valid

• Prune Instance
o Remove the nodes from the instance that are not relevant. Relevancy is

determined by the relevant attributed on controls. (See page 13, section 4.1.1.3
Relevant.) Only those nodes that are explicitly not relevant as indicated by the
control should be pruned. Some nodes may exist in the form but not have
controls associated with them. These nodes should be sent as part of the
selection.

• Send Selection
o Send the instance xml to ECHO

• Display Errors
o Errors should be displayed next to the GUI Widgets that were invalid

• Display Success
o Display a success message to the user indicating ECHO accepted the

submission

5.2. Design and Implementation Recommendations
This section lists recommendations for client implementation. These recommendations mostly
only apply to clients written in object oriented languages.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 36 of 56 Date Printed: 2/9/2007

5.2.1 Generate Types from the ECHO Form Schema

Different languages have tools available to generate types from XML Schema. Generating
types gives you a set of objects that can be unmarshalled from ECHO Form schema to work
with instead of parsing raw XML. It is easier to deal with an object called EchoForm versus
parsing text.

5.2.2 Create Business Objects to represent Controls

Business objects allow you to create an abstraction for an ECHO Forms. Generated types
give you a good baseline to convert into business objects. Generated types can not be
modified in code usually and you may want to represent the object hierarchy differently than
the tool generated them. Having business objects allows you to create the exact object
hierarchy you prefer and to add any methods onto the business objects that you may need.

5.2.3 Use Visitor Pattern on Business Objects

The visitor pattern, as documented in Gamma et al., allows you to represent an operation to be
performed on the business objects as a single class without having to check the type of
business object and cast it.

• BasicEchoFormVisitor
o This is the base class for all visitors. It implements the traversal of the controls

by calling accept on them.

• ControlMapVisitor
o This visits the controls and creates a map of the Qualified Name to control bos

• ControlRefVisitor
o This visitor uses the map to replace the controlrefs with the real referenced

controls. It uses the ShallowControlCopyConstructor to clone the original nodes.

• ShallowControlCopyVisitor
o This can create a copy of controls. It creates a shallow copy as in it only

duplicates the first layer. Any child controls of the original are also the same
children of the new duplicate node.

• ControlUIVisitor
o This visitor creates GUI Widgets for each control business object it meets

• ValidationVisItor
o This visitor validates all of the controls to make sure that the values in the

instance conform to the constraints and specific rules of each control.

• SubmitSatisfactionVisItor
o This visitor prepares the instance for submission. It validates all the controls and

prunes any controls which are not needed because they are not relevant.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 37 of 56 Date Printed: 2/9/2007

5.2.3.1 Suggested Visitor Class Diagram

This is a class diagram of some suggested visitors for a client.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 38 of 56 Date Printed: 2/9/2007

6. AUTHORING ECHO FORMS GUIDELINES AND BEST PRACTICES
This section contains a list of guidelines and best practices for writing ECHO Forms. These are not requirements but they lead
to a better user experience, less errors, easier post processing of the selection XML.

6.1. Model Guidelines
These are guidelines for writing the Model and Instance portions of an ECHO Forms document.

6.1.1 Write an XML Schema for the instance document.

XML Schema is the good way to describe what an XML document. It is well defined and is supported by many tools. Business
objects can be generated from a schema to process XML selections from an ECHO Instance. In the future ECHO Forms may
support XML schema as an extension to allow ECHO and clients to perform further checks on the selection XML.

6.1.2 Use version numbers in XML namespaces.

XML namespaces provide a good way to identify the elements of your instance and ECHO Forms. As the controls of your form
change or the structure of your instance a way is needed to indicate which version of a form or instance a client or provider is
receiving. A version number can be included in an XML namespace to version it. The complete example uses this and there are
several online resources that provide information about this best practice. An article from IBM is located here http://www-
128.ibm.com/developerworks/xml/library/x-tipnamsp.html.

6.2. Control Guidelines

6.2.1 Use ECHO system level form controls as much as possible.

Use ECHO system level form controls allows clients to display more advanced controls and improve the user experience. (See
section 4.5 System Level ECHO Forms and Advanced Clients.)

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 39 of 56 Date Printed: 2/9/2007

6.2.2 Limit the depth of groups and repeats.

As the depth of groups and repeats increase so does the apparent complexity of the GUI for the user. Try to limit groups to
about 5 levels and repeats to 2 or 3 levels to keep the user interface from looking to complex.

6.2.3 Use Ids in your controls

See page 13, section 4.1.1.2 for more information on the Id Attribute. This will give better error messages from ECHO that
clients can handle and it allows reuse of that control through control references. (See page 26, section 4.4 Reference Controls)

6.2.4 Use XPath and regular expression constraints where appropriate.

See page 15, section 4.1.1.8 Constraint. This will ensure that the data collected by the client is valid.

6.2.5 Use descriptive error messages in alerts.

This will help users determine what they need to do to correct errors. See page 16, section 4.1.1.9 Alert.

6.2.6 Utilize help attributes on controls.

This will help user’s understand what they are supposed to input. See page 15, section 4.1.1.7 Help.

6.2.7 Test forms in a client.

A newly created form should be tested in a client to ensure that the XML it creates is correct and that the user interface is usable.

7. COMPLETE ECHO FORMS EXAMPLE
This section contains a complete ECHO Forms document and screenshots from a sample client GUI.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 40 of 56 Date Printed: 2/9/2007

7.1. System Level ECHO Forms Example
This is a full example of a system level ECHO Forms document.

<?xml version="1.0" encoding="utf-8"?>
<form xmlns="http://echo.nasa.gov/v9/echoforms"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://echo.nasa.gov/echoforms/systemforms/v1">

 <model>
 <instance>
 <systemoptions xmlns="http://echo.nasa.gov/echoforms/systemforms/v1"
 xmlns:echo="http://echo.nasa.gov/echoforms/systemforms/v1">
 <mediaoptions>
 <mediatype/>
 <ftppush>
 <user/>
 <password/>
 <host/>
 <port>21</port>
 <directory/>
 </ftppush>
 <compression/>
 </mediaoptions>
 <subsetoptions>
 <subsettype/>
 <rangeloc>
 <east_longitude>0.0</east_longitude>
 <north_latitude>0.0</north_latitude>
 <south_latitude>0.0</south_latitude>
 <west_longitude>0.0</west_longitude>
 </rangeloc>
 <temporal>2000-01-01T00:00:00</temporal>
 <parameter/>
 <polygons/>
 </subsetoptions>
 </systemoptions>
 </instance>
 </model>
 <ui>
 <group id="mediaOptionsGroup" ref="echo:mediaoptions" label="Media Options">
 <select id="mediaTypeSelect" ref="echo:mediatype"

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 41 of 56 Date Printed: 2/9/2007

 multiple="false" open="false" valueElementName="value"
 type="xsd:string" label="Media Type">
 <item label="8MM Tape 5GB" value="TAPE8MM_5GB"/>
 <item label="8MM Tape 2.5GB" value="TAPE8MM_2AND1HALFGB"/>
 <item label="FTP Push" value="FTPPUSH"/>
 <item label="FTP Pull" value="FTPPULL"/>
 <item label="Compact Disc (CDROM)" value="CDROM"/>
 <item label="Digital Versatile Disc (DVD)" value="DVD"/>
 <item label="Digital Linear Tape (DLT) 20GB" value="DLT_20GB"/>
 <item label="Digital Linear Tape (DLT) 30GB" value="DLT_30GB"/>
 </select>

 <group id="ftpPushGroup" ref="echo:ftppush" relevant="echo:mediatype/echo:value = 'FTPPUSH'"
 label="FTP Push Fields">

 <input ref="echo:user" type="xsd:string" label="FTP User"/>

 <secret ref="echo:password" type="xsd:string" label="FTP Password"/>

 <input ref="echo:host" type="xsd:string" label="FTP Host"/>

 <input ref="echo:port" type="xsd:int" label="FTP Port">
 <help>The port used when making an FTP connection to the server.</help>
 </input>

 <input ref="echo:directory" type="xsd:string" label="FTP Directory"/>
 </group>

 <select id="compressionSelect" ref="echo:compression" open="false"
 multiple="false" type="xsd:string" valueElementName="value"
 relevant="echo:mediatype/echo:value = 'FTPPULL'"
 label="FTP Compression Type">
 <item label="Gzipped Tape Archive Format (TARGZ)" value="TARGZ"/>
 <item label="Bzipped Tape Archive Format (TARBZ)" value="TARBZ"/>
 <item label="PK/Win Zip Format" value="WINZIP"/>
 </select>
 </group>

 <group id="subsetOptionsGroup" ref="echo:subsetoptions" label="Subsetting Options">
 <select id="subsetTypeSelect" ref="echo:subsettype" multiple="false"
 open="false" valueElementName="value" type="xsd:string" label="Subset Type">
 <item label="Range Loc" value="RANGELOC"/>
 <item label="Temporal" value="TEMPORAL"/>

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 42 of 56 Date Printed: 2/9/2007

 <item label="Parameter" value="PARAMETER"/>
 <item label="Spatial Polygon" value="POLYGON"/>
 </select>

 <!-- parameter subsetting -->
 <input id="parameterInput" ref="echo:parameter" type="xsd:string"
 relevant="echo:subsettype/echo:value = 'PARAMETER'" label="Parameter">
 <constraints>
 <constraint>
 <pattern>^[A-Za-z]+</pattern>
 <alert>Parameter names must start with a letter</alert>
 </constraint>
 <constraint>
 <pattern>^[A-Za-z0-9]+$</pattern>
 <alert>Parameter names can only contain letters and numbers</alert>
 </constraint>
 </constraints>
 <help>Enter a parameter to subset by</help>
 </input>

 <!-- RangeLOC subsetting -->
 <group id="rangeLocGroup" ref="echo:rangeloc"
 relevant="echo:subsettype/echo:value = 'RANGELOC'" label="Range Loc Spatial Fields">
 <input type="xsd:double" ref="echo:east_longitude" label="East Longitude">
 <constraints>
 <constraint>
 <xpath>(echo:east_longitude > -180) and (echo:east_longitude < 180)</xpath>
 <alert>The east longitude must be between -180 and 180.</alert>
 </constraint>
 </constraints>
 <help>This longitude defines the eastern border of the bounding box</help>
 </input>

 <input type="xsd:double" ref="echo:west_longitude" label="West Longitude">
 <constraints>
 <constraint>
 <xpath>(echo:west_longitude > -180) and (echo:west_longitude < 180)</xpath>
 <alert>The west longitude must be between -180 and 180.</alert>
 </constraint>
 </constraints>
 <help>This longitude defines the western border of the bounding box</help>
 </input>

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 43 of 56 Date Printed: 2/9/2007

 <input type="xsd:double" ref="echo:north_latitude" label="North Latitude">
 <constraints>
 <constraint>
 <xpath>(echo:north_latitude > -90) and (echo:north_latitude < 90)</xpath>
 <alert>The North Latitude must be between -90 and 90.</alert>
 </constraint>
 </constraints>
 <help>This latitude defines the northern border of the bounding box</help>
 </input>

 <input type="xsd:double" ref="echo:south_latitude" label="South Latitude">
 <constraints>
 <constraint>
 <xpath>(echo:south_latitude > -90) and (echo:south_latitude < 90)</xpath>
 <alert>The South Latitude must be between -90 and 90.</alert>
 </constraint>
 </constraints>
 <help>This latitude defines the southern border of the bounding box</help>
 </input>
 </group>

 <!-- temporal subsetting -->
 <input id="temporalInput" ref="echo:temporal" type="xsd:dateTime"
 relevant="echo:subsettype/echo:value = 'TEMPORAL'" label="Temporal">
 <help>Enter a date to subset by</help>
 </input>

 <!-- polygon subsetting -->
 <repeat id="polygonsRepeat" ref="echo:polygons"
 relevant="echo:subsettype/echo:value = 'POLYGON'" label="Polygons Spatial Subset">
 <template>
 <polygon xmlns="http://echo.nasa.gov/echoforms/systemforms/v1">
 <points>
 <point>
 <latitude>0.0</latitude>
 <longitude>0.0</longitude>
 </point>
 <point>
 <latitude>0.0</latitude>
 <longitude>0.0</longitude>
 </point>
 <point>
 <latitude>0.0</latitude>

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 44 of 56 Date Printed: 2/9/2007

 <longitude>0.0</longitude>
 </point>
 </points>
 </polygon>
 </template>

 <output value="count(../echo:polygon)" label="Current Number of Polygons" type="xsd:int"/>

 <output value="count(../*/*/echo:point)" label="Total Points" type="xsd:int"/>

 <repeat ref="echo:points" label="Points">
 <constraints>
 <constraint>
 <xpath>count(echo:points/echo:point) >= 3</xpath>
 <alert>A polygon requires 3 points</alert>
 </constraint>
 </constraints>
 <help>Choose at least three longitude and latitude points to create a polygon to subset by.</help>
 <template>
 <point xmlns="http://echo.nasa.gov/echoforms/systemforms/v1">
 <latitude>0.0</latitude>
 <longitude>0.0</longitude>
 </point>
 </template>

 <input ref="echo:latitude" type="xsd:double" label="Latitude">
 <constraints>
 <constraint>
 <xpath>(echo:latitude > -90) and (echo:latitude < 90)</xpath>
 <alert>Latitude must be between -90 and 90</alert>
 </constraint>
 </constraints>
 </input>

 <input ref="echo:longitude" type="xsd:double" label="Longitude">
 <constraints>
 <constraint>
 <xpath>(echo:longitude > -180) and (echo:longitude < 180)</xpath>
 <alert>Longitude must be between -180 and 180.</alert>
 </constraint>
 </constraints>
 </input>
 </repeat>

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 45 of 56 Date Printed: 2/9/2007

 </repeat>
 </group>
 </ui>
</form>

7.2. Provider Level ECHO Forms Example
This is an example of a provider’s ECHO Forms document. It imports the system form example and uses some of the controls
defined there.

<?xml version="1.0" encoding="utf-8"?>
<form xmlns="http://echo.nasa.gov/v9/echoforms"

xmlns:echo="http://echo.nasa.gov/echoforms/systemforms/v1"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://provider.nasa.gov/echoforms/myoptions/v1">

 <import name="SystemFormExample"/>
 <model>
 <instance>
 <myoptions xmlns="http:provider.nasa.gov/orderoptions"
 xmlns:prov="http:provider.nasa.gov/orderoptions"
 xmlns:sys="http://echo.nasa.gov/echoforms/systemforms/v1">
 <mediatype>
 <value>FTPPUSH</value>
 </mediatype>
 <ftppush>
 <sys:user/>
 <sys:password/>
 <sys:host/>
 <sys:port>21</sys:port>
 <sys:directory/>
 </ftppush>
 <subset>
 <sys:subsettype/>
 <sys:rangeloc>
 <sys:east_longitude>0.0</sys:east_longitude>
 <sys:north_latitude>0.0</sys:north_latitude>
 <sys:south_latitude>0.0</sys:south_latitude>
 <sys:west_longitude>0.0</sys:west_longitude>
 </sys:rangeloc>
 <sys:temporal>2000-01-01T00:00:00</sys:temporal>

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 46 of 56 Date Printed: 2/9/2007

 <sys:parameter/>
 <sys:polygons/>
 </subset>
 </myoptions>
 </instance>
 </model>
 <ui>
 <group label="Media Options">
 <selectref idref="echo:mediaTypeSelect" label="Offered Media Delivery Types" ref="prov:mediatype">
 <item value="FTPPUSH"/>
 <item value="TAPE8MM_5GB"/>
 <item value="TAPE8MM_2AND1HALFGB"/>
 </selectref>
 <controlref idref="echo:ftpPushGroup" ref="prov:ftppush" relevant="prov:mediatype/prov:value='FTPPUSH'">
 <constraints>
 <constraint>
 <xpath>prov:ftppush/sys:port = '21' or prov:ftppush/sys:port = '1821'</xpath>
 <alert>We can only do FTP Push to ports 21 and 1821.</alert>
 </constraint>
 </constraints>
 </controlref>
 </group>
 <controlref idref="echo:subsetOptionsGroup" ref="prov:subset">
 <constraints>
 <constraint>
 <xpath>count(prov:subset/sys:polygons/sys:polygon) <= 1</xpath>
 <alert>We only subsetting by a single polygon.</alert>
 </constraint>
 </constraints>
 </controlref>
 </ui>
</form>

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 47 of 56 Date Printed: 2/9/2007

7.3. Sample GUI Screenshots
These are some screenshots from a GUI displaying the provider form.

7.3.1 FTP Push and RangeLoc Selected

This image shows the viewer with FTP Push media type and RangeLoc subsetting selected.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 48 of 56 Date Printed: 2/9/2007

7.3.2 8MM Tape Selected

This image shows 8MM Tape 5GB selected. Notice that the FTP Push fields are hidden
because they are not relevant.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 49 of 56 Date Printed: 2/9/2007

7.3.3 Temporal Subsetting Selected

This image shows Temporal subsetting selected. A calendar widget is used for the input field.

7.3.4 Parameter Subsetting Selected

This image shows Parameter subsetting selected. A regular string text box is used for the
parameter field.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 50 of 56 Date Printed: 2/9/2007

7.3.5 Polygon Subsetting Selected

This image shows Spatial Polygon selected. Repeats are handled in this client by putting the
controls in the repeat in a new window.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 51 of 56 Date Printed: 2/9/2007

This image shows the window for editing a polygon

This image shows the window for editing a point

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 52 of 56 Date Printed: 2/9/2007

7.4. Generated Instance
This shows a sample generated instance for the provider form if the user had selected FTP
Push and Polygon subsetting.

<myoptions xmlns="http:provider.nasa.gov/orderoptions"

xmlns:prov="http:provider.nasa.gov/orderoptions"
xmlns:echo="http://echo.nasa.gov/echoforms/systemforms/v1">

 <mediatype>
 <value>FTPPUSH</value>
 </mediatype>
 <ftppush>
 <echo:user>user</echo:user>
 <echo:password>secretpassword</echo:password>
 <echo:host>user.ftp.nasa.gov</echo:host>
 <echo:port>21</echo:port>
 <echo:directory>/tmp/user/data</echo:directory>
 </ftppush>
 <subset>
 <echo:subsettype>
 <echo:value>POLYGON</echo:value>
 </echo:subsettype>
 <echo:polygons>
 <polygon xmlns="http://echo.nasa.gov/echoforms/systemforms/v1">
 <points>
 <point>
 <latitude>45.7</latitude>
 <longitude>34.8</longitude>
 </point>
 <point>
 <latitude>29.6</latitude>
 <longitude>45.9</longitude>
 </point>
 <point>
 <latitude>89.8</latitude>
 <longitude>120</longitude>
 </point>
 </points>
 </polygon>
 </echo:polygons>
 </subset>
</myoptions>

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 53 of 56 Date Printed: 2/9/2007

8. AUTOPOPULATE EXTENSION
This section details the Autopopulate extension to ECHO Forms. See section 3.2 Extension
for more information on extending ECHO Forms. Autopopulate is a capability that allows XPath
strings into the metadata of a collection or granule to put into the instance XML.

8.1. Autopopulate Example
The autopopulate extension defines an extension tag that looks like the following.
...
<instance>
 <options xmlns="http://provider" xmlns:prov="http://provider">
 ...
 <granulesize/>
 ...
 </options>
<instance>

<extension name="auto:autopopulate"
 xmlns:auto="http://echo.nasa.gov/v9/echoforms/autopopulate">
 <auto:expressions>
 <auto:expression ref="/prov:options/prov:granulesize"

metadata="/results/provider/result/GranuleURMetaData/DataGranule/SizeMBD
ataGranule/text()" />

 </auto:expressions>
</extension>
...

8.2. Autopopulate Elements
This section contains a description of the elements of the autopopulate extension.

8.2.1 Expressions

The root of the extension is the expressions element. This contains a list of one or more
autopopulate expressions to evaluate.

8.2.1.1 XML Example
<auto:expressions>
...
</auto:expressions>

8.2.2 Expression

An expression element represents one autopopulate XPath to evaluate. The expression
element must occur in an expressions element.

8.2.2.1 Ref Attribute

• Computed Expression: Yes

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 54 of 56 Date Printed: 2/9/2007

• Legal Values: any XPath expression that returns an element or attribute node

• Default Value: None

• Inheritance rules: See 4.5 XPath Context
The ref attribute indicates which node in the instance the resolved metadata elements will be
added to. In the example below it points to the granulesize element in the instance.

8.2.2.2 Metadata Attribute

• Computed Expression: Yes

• Legal Values: any XPath expression into the catalog item metadata

• Default Value: None

• Inheritance rules: No inheritance
Metadata is an XPath expression that will be resolved against the metadata of a collection or
granule. It can refer to a node, node set, or string value.

8.2.2.3 XML Example

<auto:expression ref="/prov:options/prov:granulesize"

metadata="/results/provider/result/GranuleURMetaData/DataGranule/SizeMBData
Granule/text()" />

8.3. Processing Model
This section describes the responsibilities of a client and ECHO when processing an ECHO
Forms document with the Autopopulate Extension.

8.3.1 ECHO Processing Model

8.3.1.1 ECHO Forms Document Created

When the form is created ECHO will validate that the ECHO Forms document in the following
manner.
1. ECHO validates the form according to ECHO Forms specification.

2. ECHO validates any autopopulate expressions

a. ECHO checks that the ref XPath is valid and refers to element in instance.

b. ECHO checks that the metadata XPath is valid.

8.3.1.2 ECHO Forms is Document Sent to Client

When a client requests an ECHO Forms document that contains autopopulate expressions
ECHO will do nothing differently than the normal case. The form will be sent containing the
original autopopulate expressions.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 55 of 56 Date Printed: 2/9/2007

8.3.1.3 Client Sends the Selection XML to ECHO

When a client sends a selection to ECHO, ECHO will validate it in the usual manner. There is
no special validation of selections for forms with autopopulate expressions.

8.3.1.4 ECHO Sends the Selection XML to the Provider

Before ECHO sends an option selection XML document to the provider for a form with
autopopulate expressions, ECHO will perform the following steps:
1. ECHO loads the form associated with the selection XML.

2. For each autopopulate expression in the form

a. ECHO evaluates the ref XPath against the selection XML.

b. If the XPath resolved to an element then ECHO will replace the contents of the element with any results
by resolving the metadata XPath against the metadata of the granule or collection.

1) If nothing was returned by metadata XPath then the contents of element will be empty

a) XPath: /result/notinxml

b) Element: <granulesize></granulesize>

2) If a string was returned then the string will be the contents of the element from the selection XML

a) XPath: /results/provider/result/GranuleURMetaData/DataGranule/SizeMBDataGranule/text()

b) Element: <granulesize>142.7129</granulesize>

3) If one or more elements were returned then they will become the contents of the element in the
selection XML.

a) XPath: /results/provider/result/GranuleURMetaData/DataGranule/SizeMBDataGranule

b) Element: <granulesize> <SizeMBDataGranule>142.7129</SizeMBDataGranule> </granulesize>

8.3.2 Client Processing Model

Clients are not required to do any processing of autopopulate expressions. As with the normal
ECHO Forms handling, a client should send all elements in the model that were not referenced
by controls back to ECHO in the selection.

8.4. ECHO Form Rules and Guidelines
This section describes some rules and guidelines for using the Autopopulate extension in
ECHO Forms. MUST means it is a requirement. SHOULD means it is a guideline.
1. The ref XPath MUST evaluate to an element in the instance. They can not be used with XML attributes.

a. Example: /prov:options/prov:granulesize is good. /prov:options/@prov:granulesize is not allowed.

b. The reason for this is that the contents of the node may contain elements from the metadata and only
XML elements may contain other XML elements.

2. The metadata XPath MUST be a valid XPath.

a. ECHO can not ensure that the XPath into the metadata is semantically correct. This is the form’s author’s
responsibility.

3. Form controls SHOULD NOT reference the same element as an autopopulate expression.

 Version: 0.3
ECHO Forms Specification Updated: October 4, 2006

National Aeronautics and Space Administration Page 56 of 56 Date Printed: 2/9/2007

a. In the ECHO Processing Model for autopopulate expressions the contents of the element referred to by
the expression will be replaced with the values from the metadata. If a control referenced the same
element then any user inputted values would be lost when ECHO processed the form.

